

Phonon dispersion in $poly(\alpha$ -aminoisobutyric acid)

Onkar Prasad, Poonam Tandon, V. D. Gupta* and Shantanu Rastogi Physics Department, Lucknow University, Lucknow 226 007, India (Received 21 October 1994)

The present work is a study of phonons and their dispersion in poly(α -aminoisobutyric acid) (PAIB), which is an example of a poly(amino acid) having a 3₁₀ helical conformation. PAIB has been used as a model to carry out conformational studies on proteins and polypeptides. Dispersion curves show two interesting opposite features: (1) a tendency of some curves to crowd or close in near $\delta = \psi$, which is indicative of coupling between various modes, and (2) a divergence of some dispersion curves belonging to species of the same symmetry. The specific heat is obtained from the dispersion curves via the density of states.

(Keywords: conformation; phonon dispersion; density of states)

INTRODUCTION

As a part of the ongoing research work on vibrational analysis and phonon dispersion for numerous biopolymers¹⁻⁹, in the present communication we report similar studies on poly(α -aminoisobutyric acid) (PAIB). In addition, the specific heat has been obtained, which has a theoretically predicted value. Dwivedi and Krimm¹⁰ have already reported Raman and infra-red (i.r.) spectroscopic studies and normal mode calculations (without dispersion) for PAIB. A study of phonon dispersion is essential because it facilitates a correlation between the macroscopic properties of a crystal, such as the specific heat, enthalpy, entropy, free energy, etc., and its microscopic behaviour.

PAIB belongs to the class of poly(amino acid)s that exist in the 3₁₀ helical conformation. The steric hindrance of the two methyl groups attached to the α -carbon atom forces the dihedral angles to adjust to values very close to those required for right-handed, left-handed 3_{10} , or α helices. Dwivedi and Krimm¹⁰ concluded from their normal mode calculations that PAIB adopts a 3₁₀ helical conformation. Recently, Aleman *et al.*¹¹ have performed molecular mechanical studies of PAIB which also support this conclusion. We have carried out our studies on PAIB assuming the 3₁₀ helix to be the most favourable conformation.

THEORY

Calculation of normal mode frequencies

The Higgs-modified GF matrix method of Wilson for an infinite chain has been used as a mathematical tool for calculating the normal mode frequencies ¹². In brief, the vibrational secular equation as a function of the phase

where G is the inverse kinetic energy matrix, F is the force field matrix and δ is the vibrational phase difference between two successive residue units.

The vibrational frequencies $\nu(\delta)$ in reciprocal centimetres are related to the eigenvalues $\lambda(\delta)$ by

$$\lambda(\delta) = 4\pi^2 c^2 \nu^2(\delta) \tag{2}$$

Calculation of the specific heat

For one-dimensional systems the density of states function which expresses the energy distribution among the various branches of normal modes in the crystal is calculated from

$$g(\nu) = \sum_{j} (\partial \nu_j / \partial \delta)^{-1} \mid_{\nu_j(\delta) = \nu}$$
 (3)

Postulating a crystal as an assembly of harmonic oscillators, the frequency distribution becomes equivalent to the partition function. The constant volume specific heat capacity can be calculated using Debye's equation

$$C_{\rm v} = \sum_{j} g(\nu_j) k N_{\rm A} (h\nu_j/kT)^2 \frac{\exp(h\nu_j/kT)}{[\exp(h\nu_j/kT) - 1]^2}$$
 (4)

$$\int g(\nu_j)\,\mathrm{d}\nu_{\mathrm{j}}=1$$

RESULTS AND DISCUSSION

In PAIB there are 13 atoms per residue, giving rise to 39 dispersion curves. The vibrational frequencies were calculated for different δ values in the interval $0-\pi$ in

angle δ has the form $G(\delta)F(\delta) - \lambda(\delta)I = 0, \ 0 \le \delta \le \pi$ (1)

^{*} To whom correspondence should be addressed

Table 1 Internal coordinates and force constants (mdyn \mathring{A}^{-1})^a

ν (C=N)	6.100	$\phi(O=C-C\alpha)$	0.660 (0.60)
. ,		, ,	,
ν (C=O)	7.300	$\phi(O=C=N)$	0.450 (0.90)
$\nu(C\alpha-C)$	3.350	$\phi(C\alpha-C=N)$	0.750 (0.60)
$\nu(C\alpha-N)$	3.628	$\phi(\mathbf{C}\alpha - \mathbf{C}\beta_1 - \mathbf{H}\beta_1)$	0.440 (0.35)
$\nu(H-N)$	5.260	$\phi(\text{C}\alpha\text{-C}\beta_2\text{-H}\beta_2)$	0.440 (0.35)
$\nu(C\beta_1-H\beta_1)$	4.310	$\phi(H\beta_1-C\beta_1-H\beta_1)$	0.375 (0.26)
$\nu(C\beta_2-H\beta_2)$	4.310	$\phi(H\beta_2-C\beta_2-H\beta_2)$	0.375 (0.26)
$\nu(C\beta_1-C\alpha)$	3.400	$\phi(C\beta_1-C\alpha-C\beta_2)$	0.600 (0.24)
$\nu(C\beta_2-C\alpha)$	3.400	· · · · · · · · · · · · · · · ·	
$\phi(H-N=C)$	0.315 (0.60)	$\omega({\sf N-H})$	0.080
$\phi(C=N-C\alpha)$	0.725 (0.35)	$\omega(C=O)$	0.640
$\phi(H-N-C\alpha)$	0.230 (0.51)	, ,	
$\phi(N-C\alpha-C\beta_1)$	0.300 (0.45)	$\tau(C\alpha-C)$	0.020
$\phi(N-C\alpha-C\beta_2)$	0.300 (0.45)	$\tau(C=N)$	0.100
$\phi(N-C\alpha-C)$	0.980 (1.50)	$\tau(\mathbf{C}\alpha + \mathbf{C}\beta_1)$	0.0095
$\phi(C-C\alpha-C\beta_1)$	0.420 (0.15)	$\tau(C\alpha - C\beta_2)$	0.0095
$\phi(C-C\alpha-C\beta_2)$	0.420 (0.15)	$\tau(\mathbf{N}-\mathbf{C}\alpha)^{2}$	0.006

[&]quot;Note that ν , ϕ , ω and τ denote stretch, angle bend, wag and torsion, respectively. Non-bonded force constants are given in parentheses

steps of 0.05π . The modes corresponding to $\delta = 0, \psi$ and 2ψ are optically active, where ψ is the angle of rotation about the helix axis which separates the adjacent units. For PAIB the value of ψ is $2\pi/3$. All the modes above 1350 cm⁻¹ except amide I and II are non-dispersive, and hence only modes below this are shown later in Figures 2a and 3a. The force constants which give the best fit to the experimental data of Dwivedi and Krimm¹⁰ are given in Table 1. The assignments of normal mode frequencies were made on the basis of potential energy distributions (PEDs) and previous assignments given by Dwivedi and Krimm¹⁰. The calculated and observed frequencies (at $\delta = 0$ and $2\pi/3$) along with their assignments are given in *Table 2*. The two lowest-lying branches ($\delta = 0$ and $\delta = 2\pi/3$, $\nu = 0$) are four acoustic modes which correspond to the rotation about the helix axis and translations parallel and perpendicular to the helix axis. For the sake of simplicity the modes are discussed in two separate sections, viz. backbone and side-chain modes.

Side-chain modes

The side chain of PAIB consists of two methyl groups attached to the α -carbon atom (C α) (Figure 1). Our calculated methyl stretches, both symmetric and asymmetric, match closely the observed frequencies (Table 2). The calculated asymmetric CH₃ bendings at 1441,

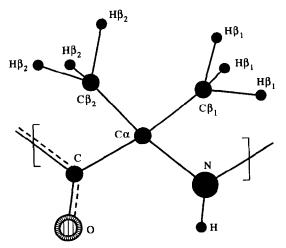


Figure 1 Repeat unit of poly(α -aminoisobutyric acid)

1437, 1435 and 1433 cm⁻¹ are assigned to the two observed frequencies at 1457 and 1450 cm⁻¹, the resolution of which into four peaks is limited by the experimental techniques employed. The CH₃ symmetric bendings are observed at 1386 and 1364 cm⁻¹ and the calculated ones are assigned within 15-22 cm⁻¹ as given in Table 2. All CH3 rocking modes except the one at 954 cm⁻¹ (calculated) match closely the observed frequencies. This mode assigned to the observed frequency at 923 cm⁻¹ could not be better fitted in spite of our best efforts which involved taking into account the offdiagonal coupling constants.

Backbone modes

Modes involving the motion of main-chain atoms $(-C-C\alpha-N-)$ are termed backbone modes. These modes are marked with an asterisk in Table 2. Amide groups of polypeptides are strong chromophores in i.r. absorption and these groups give rise to strong characteristic bands (amide A and I-VII). The correlations between these characteristic bands and conformations have been found to be useful for conformational diagnosis of polypeptides.

The amide A band arising from N-H stretching is characteristic of its functional group. This mode is highly sensitive to the strength of N-H···O=C hydrogen bonding. Our calculated amide A frequency at 3264 cm⁻¹ is assigned to the observed one at 3260 cm⁻¹, which is somewhat lower than the N-H stretch in the α -helix form (around 3290 cm⁻¹), reflecting stronger hydrogen bonding and weaker N-H bonding. This is further supported by the fact that the N···O distance in the case of the 3₁₀ helix is 2.83 Å, but in the case of α -helical polypeptides this distance is 2.93–3 Å.

All the amide modes except amide A are found to be dispersive. Amide IV shows maximal dispersion (60 cm⁻¹). It has 48% contribution from C=O in-plane bending. With increasing δ , the energy of this mode and the contribution of C=O in-plane bending decrease, whereas $\omega(N-H)$ starts to make an increasing contribution to the PED. As seen from the dispersion curves (see later) the modes at frequencies of 578 and 570 cm⁻¹ at $\delta = 0$ diverge from each other in such a fashion that these modes interchange PED contributions, i.e. C=O in-plane bending increases but $\phi(N-C\alpha-C)$ decreases in the former mode, whereas these coordinates have the reverse trend in the case of the latter mode. The energy of

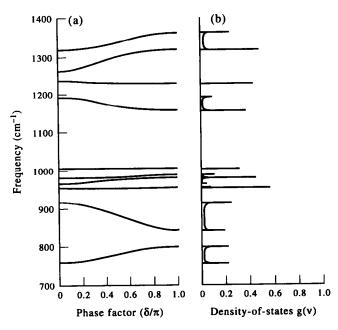
Table 2 Calculated and observed modes of $poly(\alpha$ -aminoisobutyric acid) (asterisk indicates backbone mode)

Observed Assignment (% PED at $\delta = 0$) (cm ⁻¹)				Calculated (cm ⁻¹)	Observed (cm ⁻¹)	Assignment (% PED at $\delta = 2\pi/3$)	
3260* $\nu(N-H)(99)$ 2985 $\nu(C\beta_1-H\beta_1)(52) + \nu(C\beta_2-H\beta_2)(47)$	$ \nu(N-H)(99) $ $ \nu(C\beta_1-H\beta_1)(52) + \nu(C\beta_2-H\beta_2)(47) $	(Amide A)	de A)	3264 2984]	3260 2995	$\nu(N-H)(99)$ $\nu(C\beta_1-H\beta_1)(52) + \nu(C\beta_2-H\beta_2)(47)$	(Amide A)
$\nu(C\beta_1 - H\beta_1)(47) + \nu(C\beta_2 - H\beta_2)(52)$ $\nu(C\beta_1 - H\beta_1)(49) + \nu(C\beta_2 - H\beta_2)(49)$ $\nu(C\beta_1 - H\beta_1)(47) + \nu(C\beta_2 - H\beta_2)(52)$ $\nu(C\beta_1 - H\beta_1)(52) + \nu(C\beta_2 - H\beta_2)(47)$ $\nu(C\beta_1 - H\beta_1)(52) + \nu(C\beta_2 - H\beta_2)(47)$	$ u(C\beta_1 - H\beta_1)(47) + v(C\beta_2 - H\beta_2)(52) $ $ u(C\beta_1 - H\beta_1)(49) + v(C\beta_2 - H\beta_2)(49) $ $ u(C\beta_1 - H\beta_1)(47) + v(C\beta_2 - H\beta_2)(52) $ $ u(C\beta_1 - H\beta_1)(52) + u(C\beta_2 - H\beta_2)(47) $ $ u(C\beta_1 - H\beta_1)(52) + u(C\beta_2 - H\beta_2)(47) $			2984 J 2933] 2932 2932	2935	$ u(C\beta_1 - H\beta_1)(47) + \nu(C\beta_2 - H\beta_2)(52) $ $ u(C\beta_1 - H\beta_1)(49) + \nu(C\beta_2 - H\beta_2)(49) $ $ u(C\beta_1 - H\beta_1)(47) + \nu(C\beta_2 - H\beta_2)(51) $ $ u(C\beta_1 - H\beta_1)(51) + \nu(C\beta_2 - H\beta_2)(51) $ $ u(C\beta_1 - H\beta_1)(51) + \nu(C\beta_2 - H\beta_2)(47) $ $ u(C\beta_1 - H\beta_1)(51) + \nu(C\beta_2 - H\beta_2)(47) $	
$M(\mathcal{D}_1 - H_{J_1}) M(\mathcal{D}_2 + H_{J_2}) (49)$ 1656* $M(\mathcal{D}_1 - G)(45) + M(C = N)(30) + \phi(N - C\alpha - C)(6) + \phi(N - C\alpha - C)(6)$	$\nu(C \bowtie J = \Pi \bowtie J) (+ \forall J = \nu(C \bowtie J = \Pi \bowtie J) (+ \forall J)$ $\nu(C \bowtie O) (+ \forall J) + \nu(C \bowtie N) (30) + \phi(N - C\alpha - C) (6) + \phi(N - C\alpha - C) ($	(A mide D	<u> </u>	1651	1656	$V(C\beta_1 - \Pi\beta_1)(49) + V(C\beta_2 - \Pi\beta_2)(49)$ $V(C=0)(49) + V(C=N)(29) + \phi(C\alpha - C=N)(6)$	(Amide I)
1531* $\nu(N-C=N)(9) + \nu(Ca-C)(15) + \nu(C=N)(21) + \nu(N-Ca-N-N+V+N+N+N+C-N+S)$	$\nu(C\alpha - C-1)\gamma(\nu)$ $\nu(N-C\alpha)(8) + \nu(C\alpha - C)(15) + \nu(C=N)(21) + \lambda(C-N-H)(20) + \lambda(C$	(Amide II)	i i i	1505	1545	$\nu(N-C\alpha)(12) + \nu(C\alpha-C)(12) + \nu(C=N)(22) + \phi(C=N-H)(20) + \sigma(M-N-C\alpha)(14)$	(Amide II)
$\begin{array}{cccc} \phi(C=IN-II)(20) + \phi(II-IN-CCA)(12) \\ \phi(II\beta_1-C\beta_1-CCA)(16) + \phi(II\beta_1-C\beta_1-II\beta_1)(41) + \phi(II\beta_1-C\beta_1-II\beta_1)(41) + \phi(II\beta_1-C\beta_1-II\beta_1)(41) + \phi(II\beta_1-C\beta_1-II\beta_1)(41) + \phi(II\beta_1-II\beta_1-II\beta_1-II\beta_1)(41) + \phi(II\beta_1-II\beta_1-II\beta_1-II\beta_1-II\beta_1)(41) + \phi(II\beta_1-II\beta_1-II\beta_1-II\beta_1-II\beta_1-II\beta_1-II\beta_1)(41) + \phi(II\beta_1-II\beta_1-II\beta_1-II\beta_1-II\beta_1-II\beta_1-II\beta_1-II\beta_1-II\beta_1-II\beta_1) + \phi(II\beta_1-II$	$\varphi(C_{-1}A_{-1}A_{-1}C_{0}) \cdot \varphi(11_{-1}A_{-1}C_{0}A_{1}B_{1})$ $\varphi(H_{0} C_{0} C_{0}C_{0}) \cdot \varphi(H_{0} C_{0} -H_{0})(41) +$ $\varphi(H_{0} C_{0} C_{0}) \cdot \varphi(11_{-1}A_{1}) \cdot \varphi(11_{-1}A_{1})(41_{-1}A_{1}B_{1})(41_{-1}A_{1}B_{1})(41_{-1}A_{1}B_{1})(41_{-1}A_{1}B_{1})(41_{-1}A_{1}B_{1})(41_{-1}A_{1}B_{1})(41_{-1}A_{1}B_{1})(41_{-1}A_{1}B_{1})(41_{-1}A_{1}B_{1})(41_{-1}A_{1}B_{1})(41_{-1}A_{1}B_{1})(41_{-1}A_{1}B_{1})(41_{-1}A_{1}B_{1}B_{1})(41_{-1}A_{1}B_{1}B_{1})(41_{-1}A_{1}B_{1}B_{1})(41_{-1}A_{1}B_{1}B_{1}B_{1})(41_{-1}A_{1}B_{1}B_{1}B_{1}B_{1}B_{1}B_{1}B_{1}B$	AIIIING)	(11 an	1444]	1455	$\varphi(\mathbf{H}^{-1}\mathbf{N} - C\mathbf{A}/(1+))$	(11 ANIIIV)
$\phi(H\beta_2 - C\beta_3 - C\alpha/6) + \phi(H\beta_2 - C\beta_2 - H\beta_2)(42)$ $\phi(H\beta_1 - C\beta_1 - C\alpha)(8) + \phi(H\beta_1 - C\beta_1 - H\beta_1)(72) +$	$\phi(H_D^2 - C_D^2 - C_A)(0) + \phi(H_D^2 - C_D^2 - H_D^2)(42)$ $\phi(H_D^2 - C_D^2)(8) + \phi(H_D^2 - C_D^2 - H_D^2)(72) +$			1439		$\phi(H_D) = C_{D2} - C_{A1}(1 + \phi(H_D) - C_{D2} - H_D)(5)$ $\phi(H_A) = C_{B1} - C_{A1}(1) + \phi(H_B) - C_{B1} - H_B(1)(5) + c_{A1}(1)$	
$\phi(H\beta_2 - C\beta_2 - H\beta_3(13))$ 1450 $\phi(H\beta_1 - C\beta_1 - H\beta_3(13)) + \phi(H\beta_2 - C\beta_2 - C\alpha)(8) + \phi(H\beta_3 - C\beta_2 - C\alpha)(8) + \phi(H\beta_3 - C\beta_3 - C\alpha)(8) + \phi(H\beta_3 -$	$\phi(H\beta_2 - C\beta_2 - H\beta_2(13))$ $\phi(H\beta_1 - C\beta_1 - H\beta_1)(13) + \phi(H\beta_2 - C\beta_2 - C\alpha)(8) +$ $\phi(H\beta_1 - C\beta_2 - H\beta_2)(13) + \phi(H\beta_3 - C\beta_3 - C\alpha)(8) +$			1435	1450	$\phi(H\beta_2 - C\beta_2 - H\beta_3)(2) / \phi(H\beta_2 - C\beta_2 - C\alpha)(6) + \phi(H\beta_3 - C\beta_2 - C\alpha)(6) + \phi(H\beta_3 - C\beta_2 - C\alpha)(6) + \phi(H\beta_3 - C\beta_3 - C\alpha)(6) + \phi(H\beta_3 -$	
	$\phi(H\beta_2 - C\beta_2 - H\beta_2)/4$ $\phi(H\beta_1 - C\beta_1 - H\beta_2)/46$			1433	,	$\phi(H_{J_2}-C_{J_2}-H_{J_2})(A_3)$ $\phi(H_{J_1}-C_{J_1}-H_{J_1})(A_1)+\phi(H_{J_2}-C_{J_2}-H_{J_2})(A_3)$	
1386 $\phi(H\beta_1 - C\beta_1 - C\alpha)(7) + \phi(H\beta_1 - C\beta_1 - H\beta_1)(6) + \phi(H\beta_2 - C\beta_2 - H\beta_2)(5)$	$\phi(H\beta_1 - C\beta_1 - C\alpha)(7) + \phi(H\beta_1 - C\beta_1 - H\beta_1)(6) +$ $\phi(H\beta_2 - C\beta_2 - C\alpha)(47) + \phi(H\beta_2 - C\beta_2 - H\beta_1)(35)$			1396	1385	$\phi(H\beta_1 - C\beta_1 - C\alpha)(2U) + \phi(H\beta_1 - C\beta_1 - H\beta_1)(1S) + \phi(H\beta_2 - C\beta_2 - C\alpha)(2T) + \phi(H\beta_2 - C\beta_2 - H\beta_2)(2Z)$	
1364 $\phi(H\beta_1 - C\beta_1 - C\alpha)(47) + \phi(H\beta_1 - C\beta_1 - H\beta_1)(35) + \phi(H\beta_1 - G\beta_1 - H\beta_1 - H\beta_1)(35) + \phi(H\beta_1 - G\beta_1 - H\beta_1 - H\beta_1)(35) + \phi(H\beta_1 - G\beta$	$\phi(H\beta_1 - C\beta_1 - C\alpha)(47) + \phi(H\beta_1 - C\beta_1 - H\beta_1)(35) + \phi(H\beta_1 - C\beta_1 - H\beta_1 - G\beta_1)(35) + \phi(H\beta_1 - C\beta_1 - H\beta_1)(35) + \phi(H\beta_1 - C\beta_1 - H\beta_1 - H\beta_1)(35) + \phi(H\beta_1 - C\beta_1 - H\beta_1 - $			1392	1364	$\phi(H\beta_1 - C\beta_1 - C\alpha)(30) + \phi(H\beta_1 - C\beta_1 - H\beta_1)(23) + \phi(H\beta_1 - C\beta_1 - H\beta_1 - C\beta_1 - H\beta_1)(23) + \phi(H\beta_1 - C\beta_1 - H\beta_1 - C\beta_1 - H\beta_1)(23) + \phi(H\beta_1 - C\beta_1 - H\beta_1 - C\beta_1 - G\beta_1 - G\beta_1 - $	
$\phi(H\beta_2 - C\beta_2 - C\alpha)(6) + \phi(H\beta_2 - C\beta_2 - H\beta_2)(5)$ 1313 $\nu(C\alpha - C)(12) + \nu(C = O)(7) + \phi(C = N - H)(14) + \phi(H - N - C\alpha)(17) + \nu(C\alpha - C\beta_3)(20)$	$\phi(H\beta_2 - C\beta_2 - C\alpha)(b) + \phi(H\beta_2 - C\beta_2 - H\beta_2)(5)$ $\phi(C\alpha - C)(12) + \phi(C=0)(7) + \phi(C=N-H)(14) +$ $\phi(H-N-C\alpha)(17) + \phi(C\alpha - C\beta_2)(20)$	(Amid	(Amide III)	1351	ı	$\phi(H\beta_2 - C\beta_2 - C\alpha)(24) + \phi(H\beta_2 - C\beta_2 - H\beta_2)(19)$ $\nu(C\alpha - C\beta_1)(8) + \nu(C\alpha - C)(25) + \phi(C=N-H)(7) +$ $\phi(H-N-C\alpha)(10) + \phi(H\beta_1 - C\beta_1 - C\alpha)(6) + \phi(H\beta_1 - C\beta_1 - H\beta_1)(6) +$	
1280 $\nu(N-C\alpha)(38) + \nu(C\alpha-C)(22) + \phi(H\beta_1-C\beta_2-C\alpha)(8)$	$ u(N-C\alpha)(38) + \nu(C\alpha-C)(22) + \phi(H\beta_1-C\beta_1-C\alpha)(8) $			1311	1304	$ \nu(C_{\alpha}-C\beta_{2})(5) + \phi(H\beta_{2}-C\beta_{2}-H\beta_{2})(5) $ $ \nu(N-C_{\alpha})(32) + \phi(H-N-C_{\alpha})(5) + \phi(H\beta_{1}-C\beta_{1}-C\alpha)(5) + \phi(H\beta_{1}-C\beta_{1}-C\alpha)(5) + \phi(H\beta_{1}-C\beta_{1}-H\beta_{1})(5) + \nu(C\alpha-C\beta_{2})(16) + \phi(H\beta_{2}-C\beta_{2}-C\alpha)(5) + \phi(H\beta_{1}-C\beta_{2}-C\alpha)(5) $	
	$\nu(C\alpha - C\beta_1)(49) + \phi(H\beta_2 - C\beta_2 - C\alpha)(12)$			1228	1227	$\phi(H\beta_2 - C\beta_2 - H\beta_2)(5)$ $\nu(C\alpha - C\beta_1)(39) + \nu(C\alpha - C\beta_2)(19) + \phi(H\beta_2 - C\beta_2 - C\alpha)(8)$	
ζ	β_1	$-C(\beta_2)(33)$		1161	0/11	$\nu(N-C\alpha)(3) + \nu(C=0)(12) + \nu(C=N)(16) + $ $\phi(H\beta_1-C\beta_1-C\alpha)(16) + \nu(C\alpha-C\beta_2)(8) + \phi(H\beta_2-C\beta_2-C\alpha)(11)$	
1018 $\phi(H\beta_1 - C\beta_1 - C\alpha)(42) + \phi(H\beta_2 - C\beta_2 - C\alpha)(47)$ 996 $\nu(C\alpha - C\beta_1)(6) + \phi(H\beta_1 - C\beta_1 - C\alpha)(36) + \nu(C\alpha - C\beta_2)(6) +$	$\phi(H\beta_1 - C\beta_1 - C\alpha)(42) + \phi(H\beta_2 - C\beta_2 - C\alpha)(47)$ $\nu(C\alpha - C\beta_1)(6) + \phi(H\beta_1 - C\beta_1 - C\alpha)(36) + \nu(C\alpha - C\beta_2)$	+(9)		1005 986	1018 996	$\phi(\mathrm{H}\beta_1\mathrm{-C}\beta_1\mathrm{-C}\alpha)(42) + \phi(\mathrm{H}\beta_2\mathrm{-C}\beta_2\mathrm{-C}\alpha)(48)$ $\nu(\mathrm{N-C}\alpha)(9) + \phi(\mathrm{H}\beta_1\mathrm{-C}\beta_1\mathrm{-C}\alpha)(66) +$	
$ \phi(H\beta_2 - C\beta_3 - C\alpha)(39) \nu(N - C\alpha)(26) + \phi(H\beta_1 - C\beta_1 - C\alpha)(28) + \phi(H\beta_2 - C\beta_2 - C\alpha)(26) + \phi(H\beta_2 - C\beta_3 - C\alpha)(28) + \phi(H\beta_3 - C\alpha)(28) + $	$-C\beta_1-C\alpha)(28)+\phi(H\beta_2-6)$	$C\beta_2-C\alpha)(21)$	21)	626	1	$\phi(H\beta_1 - C\beta_1 - H\beta_1)(5) + \phi(H\beta_2 - C\beta_2 - C\alpha)(7)$ $\phi(C\alpha_1 - C\beta_1)(10) + \phi(H\beta_2 - C\beta_2 - C\alpha)(69) + \phi(H\beta_2 - C\beta_2 - C\alpha)(69)$	
923 $\nu(C\alpha - C\beta_1)(12) + \phi(H\beta_1 - C\beta_1 - C\alpha)(30) + \nu(C\alpha - C\beta_2)(13) +$	$\nu(C\alpha - C\beta_1)(12) + \phi(H\beta_1 - C\beta_1 - C\alpha)(30) + \nu(C\alpha - C\beta_1)(30) + \nu(C\alpha$	2)(13)+	+	955	940	$\varphi(\mathbf{H}D_2 - CD_2 - \mathbf{H}D_3)(2)$ $\varphi(\mathbf{N} - CD_3)(10) + \psi(\mathbf{C} - C)(5) + \phi(\mathbf{C} - \mathbf{N} - CD_3)(5) + \psi(\mathbf{C} - \mathbf{N} - CD_3)(5) + \psi($	
$\phi(H\beta_2 - C\beta_2 - C\alpha)(28) \nu(C\alpha - C)(21) + \phi(C = N - C\alpha)(8) + \phi(O = C = N)(9) +$	$\phi(H\beta_2 - C\beta_2 - C\alpha)(28)$ $\nu(C\alpha - C)(21) + \phi(C=N-C\alpha)(8) + \phi(O=C=N)(9) +$			864	1	$\phi(H\beta_1 - C\beta_1 - C\alpha)(29) + \nu(C\alpha - C\beta_2)(9) + (H\beta_2 - C\beta_2 - C\alpha)(14)$ $\nu(N - C\alpha)(6) + \nu(C\alpha - C\beta_1)(9) + \nu(C\alpha - C)(16) +$	
$\phi(H\beta_1 - C\beta_1 - C\alpha)(5) + \nu(C=0)(22) + \phi(H\beta_2 - C\beta_2 - 4)$ 762 $\nu(C\alpha - C\beta_1)(8) + \omega(N-H)(7) + \omega(C=0)(73)$	$\phi(H\beta_1 - C\beta_1 - C\alpha)(5) + \nu(C = O)(22) + \phi(H\beta_2 - C\beta_2 - C\alpha)$ $\nu(C\alpha - C\beta_1)(8) + \omega(N - H)(7) + \omega(C = O)(73)$	(Amid)	α)(7) (Amide VI)	790	790	$\nu(C=O)(11) + \phi(O=C=N)(5) + \omega(C=O)(9) + \nu(C\alpha-C\beta_2)(16)$ $\nu(C\alpha-C\beta_1)(18) + \phi(N-C\alpha-C)(7) + \omega(N-H)(7) +$	
680* $\omega(N-H)(31) + \tau(N-C\alpha)(10) + \tau(C=N)(46)$	$\omega(N-H)(31) + \tau(N-C\alpha)(10) + \tau(C=N)(46)$	(Amide V)	de V)	21.2	694	$\omega(C=O)(48) + \nu(C\alpha - C\beta_2)(6)$ $\omega(N-H)(28) + \omega(C=O)(7) + \tau(N-C\alpha)(9) + \tau(C=N)(49)$	(Amide VI) (Amide V)
	$ u(N-C\alpha)(8) + \nu(C\alpha - C\beta_1)(12) + \phi(N-C\alpha - C)(28) + \beta(C\alpha - C\beta_1)(12) + \phi(N-C\alpha - C\beta_2)(13) $	-ν(Cα-	C)(é)	641	642	$ u(C\alpha-C)(13) + \phi(C=N-C\alpha)(7) + \phi(C\alpha-C=O)(14) + u(C-C-O)(7) $	(Amide IV)
568 $\phi(N-C\alpha-C\beta_1)(10) + \phi(C\alpha-C-O)(40) + \phi(C\alpha-C-O)(40)$ $\phi(O-C-O)(8) + \phi(C\beta_1-C\alpha-C)(7)$	$\phi(C_j) = C_{\alpha} - C_{\beta,j}(0) + i(C_{\alpha} - C_{\beta,j})(0) + \phi(C_{\alpha} - C_{\beta,j})(10) + \phi(C_{\alpha} - C_{\alpha})(40) + \phi(C_{\alpha} - C_{\alpha})(40) + \phi(C_{\alpha} - C_{\alpha} - C_{\alpha})(40)$	C=N)(12) + (Amide	4)(12) + (Amide IV)	502	505	$\phi(C_{\alpha}-C_{-1})(11) + \phi(C_{\beta}-C_{\alpha}-C)(11) + \phi(C_{\beta}-C_{\alpha}-C)(11) + \phi(C_{\beta}-C_{\alpha}-C)(11) + \phi(C_{\beta}-C_{\alpha}-C)(11) + \phi(C_{\alpha}-C)(11) + \phi(C_{\alpha}-C$	
362 $\phi(C=N-C\alpha)(7) + \phi(N-C\alpha-C)(7) + \phi(C\beta_1-C\alpha-C\beta_2)(15) + \phi(N-C\alpha-C\beta_2)(47)$	$\phi(C=N-C\alpha)(7)+\phi(N-C\alpha-C)(7)+\phi(C\beta_1-C\alpha-C\beta_2)$ $\phi(N-C\alpha-C\beta_2)(47)$	2)(15) ⊦	+	389	367	$ \rho(C\alpha - C/2_2)(6) + \phi(N - C\alpha - C/2_2)(11) $ $ \phi(C=N-C\alpha)(6) + \phi(C\beta_1 - C\alpha - C\beta_2)(20) + \phi(C\alpha - C=O)(14) + \phi(O=C=N)(5) + \phi(N-C\alpha - C\beta_2)(23) $	

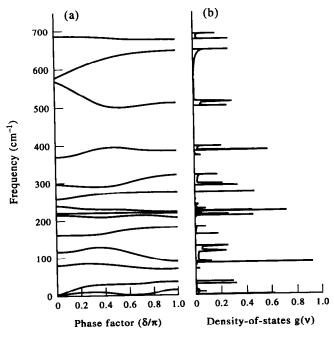
Table 2 (Continued)	tinued)					
Calculated (cm ⁻¹)	Observed (cm ⁻¹)	Assignment (% PED at $\delta=0$)	Calculated (cm ⁻¹)	Calculated Observed (cm ⁻¹)	Assignment (% PED at $\delta = 2\pi/3$)	
296	298	$\phi(\text{C=N-C}\alpha)(7) + \phi(\text{N-C}\alpha - \text{C}\beta_1)(19) + \phi(\text{C}\beta_1 - \text{C}\alpha - \text{C})(7) + \phi(\text{C}\beta_1 - \text{C}\alpha - \text{C}\beta_2)(19) - \phi(\text{C}\beta_1 - \text{C}\alpha - \text{C})(7) + \phi(\text{C}\alpha - \text{C}\beta_1)(6) + \phi(\text{O=C=N})(18)$	305	313	$\phi(\mathbf{N}-\mathbf{C}\alpha-\mathbf{C}\beta_1)(41) + \phi(\mathbf{C}\beta_1-\mathbf{C}\alpha-\mathbf{C}\beta_2)(25) + \phi(\mathbf{C}\alpha-\mathbf{C}=\mathbf{N})(6) + \phi(\mathbf{O}=\mathbf{C}=\mathbf{N})(7)$	
257	I	$ \dot{\rho}(C\alpha - C)(6) + \dot{\phi}(C\beta_1 - C\alpha - C)(17) + \dot{\phi}(C\beta_1 - C\alpha - C\beta_2)(29) + \\ \dot{\phi}(0 = C = N)(5) + \dot{\phi}(N - C\alpha - C\beta_2)(7) + \dot{\phi}(C\beta_1 - C\alpha - C)(18) $	273	284	$ u(N-C\alpha)(5) + \phi(N-C\alpha-C\beta_1)(6) + \phi(N-C\alpha-C)(7) + \phi(C\beta_1-C\alpha-C)(11) + \phi(C\beta_1-C\alpha-C\beta_2)(21) + \phi(C\alpha-C=N)(9) + \phi(N-C\alpha-C\beta_3)(7) $	
239	ı	$\phi(N-C\alpha-C\beta_1)(19) + \phi(C\beta_1-C\alpha-C)(23) + \tau(C\alpha-C\beta_2)(11) + \phi(C\alpha-C=N)(6) + \phi(C\beta_1-C\alpha-C)(5) + \phi(C\beta_1-C\alpha-C\beta_2)(13)$	226	220	$\tau(C\alpha - C\beta_1)(30) + \phi(N - C\alpha - C\beta_2)(8) + \phi(C\beta_1 - C\alpha - C)(34)$	
220 215	220	$\tau(C\alpha - C\beta_1)(75) + \tau(C\alpha - C\beta_2)(20)$ $\phi(C\beta_1 - C\alpha - C)(8) + \tau(C\alpha - C\beta_1)(15) + \tau(C\alpha - C\beta_2)(67)$	220 213		$\tau(\mathrm{C}\alpha-\mathrm{C}\beta_1)(28) + \tau(\mathrm{C}\alpha-\mathrm{C}\beta_2)(65)$ $\tau(\mathrm{C}\alpha-\mathrm{C}\beta_1)(38) + \tau(\mathrm{C}\alpha-\mathrm{C}\beta_2)(25) + \phi(\mathrm{C}\beta_1-\mathrm{C}\alpha-\mathrm{C})(18)$	
162	591	$ \phi(C=N-C\alpha)(7) + \phi(N-C\alpha-C\beta_1)(8) + \phi(N-C\alpha-C)(8) + \phi(C\beta_1-C\alpha-C)(6) + \phi(C\alpha-C=N)(5) + \tau(C\alpha-C)(18) + \phi(N-C\alpha-C\beta_1)(13) + \phi(C\beta_1-C\alpha-C)(12) $	177	189	$\phi(N-C\alpha-C\beta_1)(8) + \phi(C\beta_1-C\alpha-C)(37) + \phi(C\alpha-C=N)(9) + \tau(C\alpha-C)(7) + \phi(C\beta_1-C\alpha-C)(5)$	
117	115	$\phi(C=N-C\alpha)(21) + \phi(N-C\alpha-C\beta_1)(11) + \phi(C\alpha-C=N)(17) + \phi(O=C=N)(7) + \phi(C\beta_1-C\alpha-C)(19)$	110	107	$\phi(C=N-C\alpha)(24) + \phi(N-C\alpha-C)(6) + \phi(C\alpha-C=N)(5) + \omega(N-H)(9) + \tau(C\alpha-C)(11) + \phi(N-C\alpha-C\beta)(13)$	
82	107*	$\phi(C=N-C\alpha)(8) + \tau(N=C\alpha)(24) + \tau(C\alpha-C)(49) \qquad \text{(Amide VII)}$	74			(Amide VII)

the higher mode increases and that of the lower mode decreases with increasing δ .

The amide V band, which is predominantly $\omega(N-H)$, has been calculated at $687\,\mathrm{cm}^{-1}$, corresponding to the observed peak at $680\,\mathrm{cm}^{-1}$. In the α -helix it is observed around 620 cm⁻¹. Thus the hydrogen bond between N-H and C=O (N-H···C=O) is stronger in PAIB, supporting a more compact helix (3₁₀ as opposed to 18₅). Stronger hydrogen bonding leads to an increased N-H out-ofplane bending frequency because of the increased force constant.


The amide VII band, which arises from torsional motion about C=N, also plays an important role in the characterization of conformations. This mode is calculated at 82 cm⁻¹, corresponding to the observed peak at 107 cm⁻¹. At $\delta = 0$ this mode largely consists of $\tau(C\alpha - C)$ and $\tau(N-C\alpha)$; the PED at $\delta = \psi$ shows considerable mixing with $\tau(C=N)$. In addition, because of the helical nature of the conformation a certain amount of mixing with $\phi(C=N-C\alpha)$ takes place. Such mixing has been reported in the case of the α -form of poly(L-alanine) (α -PLA) but not in the case of the β -form of poly(L-alanine) (β -PLA)^{2,3}. Dispersion for this mode is found to be very similar to that for α -PLA. Unlike this mode in β -PLA, there is a decrease in mode frequency with increasing δ from 0 to π .

Amide III, IV and VI do not appear as pure backbone modes. The PEDs of these modes have considerable contributions from the side chain. The frequencies of these amide modes do not depend solely on the mainchain conformation, the side-chain structure in question also playing an important role¹³.


Dispersion curves

Dispersion curves (Figures 2a and 3a) provide information on the extent and degree of coupling. Two interesting features are observed in the dispersion curves: (1) a tendency of some curves to crowd or close in near $\delta = \psi$, which is indicative of coupling between various modes, and (2) a divergence of some dispersion curves in the neighbourhood of the phase angle, which is a multiple of half the helical angle. The phenomenon of crowding has been observed for two pairs of modes. The first pair consists of the mode at 578 cm⁻¹ and amide V. At $\delta = 0$ the former has small contributions from C=O in-plane and out-of-plane bendings which later increase with δ . In the case of amide V the C=O in-plane bending increases at the cost of $\omega(N-H)$. The second pair consists of the mode at $117 \, \text{cm}^{-1}$ (at $\delta = 0$) and amide VII. In the case of the mode at 117 cm⁻¹ the contribution of $\phi(C=N-C\alpha)$ increases appreciably up to $\delta=0.6\pi$ and decreases on further increase in δ , whereas for amide VII the PED contribution of the $\phi(C=N-C\alpha)$ term decreases with increasing δ . This feature is possibly due to N-H and C=O interaction. All these modes involve the motion of the nitrogen atom. This characteristic feature has been noticed for polytetrafluoroethylene $(15/7)^{14}$ and α -PLA $(18/5)^2$, and has been attributed in both cases to strong intramolecular interactions stabilizing the helical structure.

The second interesting feature of the dispersion curves is the divergence of some modes. The modes at 257 and $296 \,\mathrm{cm}^{-1}$ for $\delta = 0$ come close together around $\delta = 0.55\pi$ and then diverge. Both these modes are a mixture of bending around $C\alpha$ and C=0 in-plane bending. They

Figure 2 (a) Dispersion curves of $poly(\alpha$ -aminoisobutyric acid) $(1400-700\,\mathrm{cm}^{-1})$. (b) Density of states $g(\nu)$ $(1400-700\,\mathrm{cm}^{-1})$

Figure 3 (a) Dispersion curves of poly(α -aminoisobutyric acid) below 750 cm⁻¹. (b) Density of states $g(\nu)$ below 750 cm⁻¹

have the same symmetry. For the 296 cm⁻¹ mode the contribution of bending around $C\alpha$ increases and that of C=O in-plane bending decreases with increasing δ whereas the 257 cm⁻¹ mode has the reverse trend. This is another example of the divergence of modes having the same symmetry. Such divergence has recently been observed by Burman et al.⁸ and Gupta et al.⁹ in ω -helical polypeptides.

Specific heat

Calculated frequency distributions as a function of

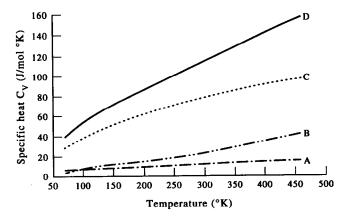


Figure 4 Variation in specific heat C_v with temperature

frequency are shown in Figures 2b and 3b. The specific heat has been calculated as a function of temperature from the dispersion curves via the density of states. The theoretical details have already been given. The predicted values of the specific heat are shown in Figure 4, curve D. The contributions of pure backbone (Figure 4, curve A), pure side chain (Figure 4, curve B) and mixed modes (Figure 4, curve C) to the specific heat have also been calculated. Our results show that the maximum contribution comes from the mixed modes.

In spite of several limitations involved in the calculation of the specific heat and the absence of experimental data, the present work provides a good starting point for further basic studies on the thermodynamic behaviour of polypeptide proteins which have welldefined conformations.

ACKNOWLEDGEMENT

Financial assistance to one of the authors (V.D.G.) from CSIR under the Emeritus Scientist Scheme is gratefully acknowledged.

REFERENCES

- Gupta, V. D., Trevino, S. and Boutin, H. J. Chem. Phys. 1968,
- Krishnan, M. V. and Gupta, V. D. Chem. Phys. Lett. 1970, 6, 231 3
- Krishnan, M. V. and Gupta, V. D. Chem. Phys. Lett. 1970, 7, 285
- Singh, R. D. and Gupta, V. D. Spectrochim. Acta, Part A 1971, 4
- 5 Dwivedi, A. M. and Gupta, V.D. Chem. Phys. Lett. 1972, 16, 909
- Gupta, V. D., Singh, R. D. and Dwivedi, A. M. Biopolymers 6 1973, 12, 1377
- Srivastava, R. B and Gupta, V. D. Biopolymers 1974, 13, 1965
- 8 Burman, L., Tandon, P., Gupta, V. D., Rastogi, S., Srivastava, S. and Gupta, G. P. J. Phys. Soc. Jpn 1995, 64, 307
- Gupta, A., Tandon P., Gupta, V. D., Rastogi, S. and Gupta, G. P. J. Phys. Soc. Jpn 1995, 64, 315
- 10 Dwivedi, A. M. and Krimm, S. Biopolymers 1984, 23, 2025
- Aleman, C., Subirana, J. A. and Perez, J. J. Biopolymers 1992, 11
- 12 Higgs, P. W. Proc. R. Soc. London, Ser. A 1953, 220, 472
- Krimm, S. and Bandekar, J. Adv. Protein Chem. 1986, 38, 181 Hannon, M. J., Boerio, F. J. and Koenig, J. L. J. Chem. Phys. 13
- 1969, 50, 2829